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ABSTRACT A number of living primates feed part-
year on seemingly hard food objects as a fallback. We
ask here how hardness can be quantified and how this
can help understand primate feeding ecology. We report
a simple indentation methodology for quantifying hard-
ness, elastic modulus, and toughness in the sense that
materials scientists would define them. Suggested cate-
gories of fallback foods—nuts, seeds, and root vegeta-
bles—were tested, with accuracy checked on standard
materials with known properties by the same means.
Results were generally consistent, but the moduli of root
vegetables were overestimated here. All these properties
are important components of what fieldworkers mean by
hardness and help understand how food properties influ-
ence primate behavior. Hardness sensu stricto deter-

At certain times of the year, primates switch their
diets toward fallback items that are otherwise avoided.
Very often, these foods are described as being hard. Per-
haps the best documented examples of hard-food con-
sumption by primates are seen among the pitheciins
(Kinzey and Norconk, 1990, 1993), mangabeys (Lambert
et al., 2004), capuchins (Wright, 2005), and orangutans
(Vogel et al., 2008). When eaten seasonally, these foods
are classifiable as fallback foods of the “filler” category,
the consumption of which is inversely related to the
availability of preferred foods (Marshall and Wrang-
ham, 2007). Such foods are currently postulated to have
major evolutionary consequences for the morphology of
the feeding apparatus, including the evolutionarily im-
portant characteristic of molar enamel thickness (Lam-
bert et al., 2004; Marshall and Wrangham, 2007). How-
ever, the problem in examining this suggestion by anal-
ysis and experimentation is that there are very few
quantitative measurements of the physical properties of
these foods. One problem is the actual definition of
hardness in terms of material properties. The other is
the difficulty of shaping hard food particles into speci-
mens that comply with criteria given in the materials
testing literature. For example, shaping a seed coat
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mines whether foods leave permanent marks on tooth
tissues when they are bitten on. The force at which a
food plastically deforms can be estimated from hardness
and modulus. When fallback foods are bilayered, consist-
ing of a nutritious core protected by a hard outer coat, it
is possible to predict their failure force from the tough-
ness and modulus of the outer coat, and the modulus of
the enclosed core. These forces can be high and bite
forces may be maximized in fallback food consumption.
Expanding the context, the same equation for the failure
force for a bilayered solid can be applied to teeth. This
analysis predicts that blunt cusps and thick enamel will
indeed help to sustain the integrity of teeth against con-
tacts with these foods up to high loads. Am J Phys
Anthropol 140:643-652, 2009.  ©2009 Wiley-Liss, Inc.

into an accurate beam for three-point bending or into a
double cantilever, both common methods for getting de-
formation and fracture properties in hard materials
(and both described in Atkins and Mai, 1985), is very
difficult in field conditions. When such specimens can
be made, it is easy to exceed the current 100 N force
limit in a portable tester like the Darvell tester (Darvell
et al., 1996). This has led to the largest major investiga-
tion of the mechanical properties of primate foods pub-
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lished to date (Vogel et al., 2008) necessarily lacking
data on the hardest food items. Yet these hard items
may well have been crucial fallback items that, over
time, have selected for dento-facial features like large
jaw muscles and thickened enamel in the consuming
primates.

The first issue is that of terminology. To a materials
scientist, the hardness H of a material is its resistance
to indentation, measured as the force producing unit
area of plastic deformation under the indenter (Tabor,
1951). However, this is not the definition of hardness
suggested for feeding studies (Lucas et al., 2000, 2002;
Vincent et al., 2002; Lucas, 2004; Vogel et al., 2008),
which is the square root of the product of the elastic
modulus E (the stress-strain stiffness in the elastic
range), and the fracture energy R, the energy expended
required to grow a crack of unit area. This quantity, i.e.,
(ER)%5, is often called toughness (T) by materials scien-
tists, which they take to be the resistance to crack prop-
agation (Lawn, 1993). Thus, what some people call
“toughness,” others refer to as “hardness.” However, pro-
vided it is made clear which definition is being
employed, and that the testing protocol is clear, meas-
uring the values and demonstrating their consequences
are the useful aspects of the work. The use of measuring
such properties for feeding studies for estimating break
forces and understanding tooth design is our main aim
here.

Indentation hardness tests originally involved large
areas of contact and therefore high forces. However, the
tests have been progressively miniaturized; a critical
advantage to this being that the size of an indentation
can then be matched to the size of structures that deter-
mine the mechanical response of a material under load.
Indentations involving nanometer displacements have
shown that much of the fracture resistance of enamel is
associated with the large strains that the organic matrix
develops between individual crystallites, allowing the
latter to displace easily, with the absorption of consider-
able energy (He and Swain, 2007). This deflection
mechanism is common to bone, mollusk shell, wood, and
man-made fiber composites (Fratzl, 2007). However,
nanoindentation may be insufficient to initiate cracking,
so information on the initiation and progress of fractures
must be monitored at a larger scale. Microindentation
achieves this by sinking an indenter to sub-millimeter
depths from which cracks often form in brittle materials
(Anstis et al., 1981). Finally, in the oldest version of the
test, a macroindenter sinks millimeters into a tissue.
This test offers a simpler method of obtaining toughness
by placing the indenter close to a free surface to form a
small fragment of material (Chai and Lawn, 2007). Its
scale is also much more relevant to the gross organiza-
tion of the enamel cap of a tooth (Lawn et al., 2008) with
respect to fallback foods.

With any of these tests, it is possible to use depth-
sensing both to measure the hardness of a material dur-
ing loading and the elastic modulus from the rebound of
the deepest part of the indentation (Lawn and Howes,
1981). This article reports a method of obtaining inden-
tation hardness and elastic modulus of hard foods in the
field using one easy-to-operate test. We assess the accu-
racy of this, and demonstrate how knowledge of these
values would benefit an assessment of the evolutionary
influence of these mechanical properties on the primate
consumer. In addition, we also indicate briefly how
recent advances in fracture mechanics (Chai and Lawn,
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2007) allow toughness estimates to be obtained by chip-
ping these foods.

MATERIALS AND METHODS
Test apparatus

Vickers indenters were fabricated from 6-mm diameter
high-speed steel and tungsten carbide rods by grinding
one end into the shape of the required square pyramid,
the junction of the faces making an angle of 136° at the
apex. The stainless steel suffices for most foods, but chip-
ping tests on glass required the extra hardness of tung-
sten carbide. The rods were held in a hard aluminum
alloy block by an Allen screw. This block was tapped on
the opposite face to receive the stud of either a 100 N or
a 1,000 N miniature load cell (Sensotec, Columbus, OH)
beneath the crosshead on a Darvell HKU portable me-
chanical tester (Darvell et al., 1996; Fig. 1). The Darvell
tester is a hand-wound device that can be used in remote
field situations. Its key features are its portability and
reliability even in very humid environments. Crosshead
movement is effected by manually turning a handle and
monitored by a sector disc-encoder revolution counter
(Darvell et al., 1996). To get true force vs. displacement
data, the tester reads the force after every micrometer of
crosshead movement. The tester is connected via a
PCMCIA A-D card (model 6062E) to a laptop computer
running Labview 7.1 (both National Instruments, Austin
TX) and the combination thus functions as a miniature
universal testing machine without the need for strict
rate control.

Specimens

As standards, specimens of industrial polymers—poly-
methyl methacrylate, polycarbonate (Makrolon, Bayer
Material Science, Leverkusen, Germany), polytetrafluo-
roethylene (Teflon, DuPont, Wilmington, DE), and poly-
styrene foam (manufacturer unknown; density 0.024 g
em ™ ?)—were employed as standards for hardness-modu-
lus tests. These were tested for their elastic modulus in-
dependently by a dynamic vibration excitation test
(Grindosonic, Lemmens NV, Leuven, Belgium). However,
given that dynamic moduli tend to be larger than static
values, these estimates, and those for hardness, were
supplemented with literature estimates. For chipping
tests, we used sodalime glass as a standard because the
properties of this ceramic are well-known (Lawn, 1993).
The glass blocks were polished down to a 1 um finish
with diamond paste prior to testing.

To represent fallback foods, we tested various seed
shells (origins listed in Table 1), plus some seed kernels
and two root vegetables from commercial suppliers. The
commercially obtained specimens were tested as
received. The seed shells and palm nuts were all dry,
although testing of seed shells in other studies has
shown little difference between wet and dry specimens
for most properties (Jennings and Macmillan, 1986;
Wang and Mai, 1994; Williamson and Lucas, 1995).
Parts of the specimens used for testing were chosen at
random. All specimens were fashioned with a flat upper
surface, ensuring a specimen thickness at least 10 times
the depth of the intended indentation to avoid the
“anvil” effect. Seed shells were polished down with 600
grit abrasive paper prior to testing to provide a flat sur-
face for hardness-modulus tests. For chipping, a side
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Fig. 1. The principle of depth-sensing indentation tests on an ideal elastic-plastic solid. In A, a pyramidal indenter formed on
the end of a cylindrical rod of diameter d is shown in cross section. In B, the indenter has been sunk to full depth into a flat (food)
material surface aligned normal to the long axis of the cylinder: it would never be inserted to that depth in practice. Elastic defor-
mation alongside the indenter causes a sinking of the surface at the indenter margin to a depth, 4.. The actual contact surface with
the indenter only extends to a depth A4, considerably less than the actual displacement of the indenter, which is A .,., at full load,
Py In C, after unloading, the remaining permanent indentation still has a surface width d, but is shallower and does not fit the
indenter shape (dashed line) because of elastic recoil under the indenter tip. In D, the positions of the indenter in A—C are shown
on a load-displacement chart. Loading has a curvilinear form because the area of contact increases continuously as the indenter is
pushed further into the material. On unloading, the force P does not immediately drop to zero because the material under the in-
denter tip is still deforming elastically and thus pushes against it as it retreats. The curvilinear form of the unloading curve reflects
indenter shape (Oliver and Pharr, 2004). Calculations of % involve finding the slope S of the load-displacement at initial unloading.
E shows the basic design of the Darvell field tester. A mechanical frame houses a crosshead moved by a handle. Both displacement
and force information are transferred to an electronics box, which then transfers signal to a real-time computer display. The in-
denter, which would be positioned below the crosshead, is wound down onto a specimen resting on the tester base.

wall orthogonal to the top surface was created by similar
polishing. Where necessary, specimens were secured to
the test stage under the indenter with double-sided
sticky tape or with a clamp to stabilize them.

Correction for machine compliance

The reason for the often relatively huge size of testing
machines in mechanical engineering laboratories is to
make the machine as stiff as possible, since the aim is to
deform the specimen and not the machine itself. How-
ever, even for the stiffest of machines, its compliance
needs to be corrected for. Calibration in this sense was
achieved by replacing the indenter with a flat aluminum
block and driving the crosshead down extremely care-
fully so that this bore on the specimen stage. With a
large area of contact, this measures the overall compli-
ance of a tester system (van Vliet et al., 2004). The

machine deflection was recorded in this way at each 1 N
interval up to full-scale. These data were then compiled
into a look-up table on a computer program for subtrac-
tion from the measured deformation automatically dur-
ing each test run for hardness-modulus tests only.

Hardness-modulus tests

During testing, the crosshead was first wound down
until the indenter was a few micrometers away from
contact. With the computer program then started, inden-
tations could be made up to 1 mm in maximum depth by
slowly and regularly winding the crosshead into the
specimen at speeds of between 5 and 20 mm min .
Depths of several hundred microns or more were
required to minimize the increased compliance caused by
the tape, ~50 um in thickness, and inaccuracies of dis-
placement due to backlash in the screw threads. A real-
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TABLE 1. Results of hardness-modulus macro-indentation experiments

Reduced
Indentation elastic
Number hardness/ modulus/
Specimens of tests  MPa (s.d) GPa (s.d.) Other values for comparison
Seed shells
Scheelea sp. (fam. Arecaceae) Barro 8 271.5 (74.7) 3.80 (0.99) Modulus: Cocos nucifera 2.9-4.9 GPa
Colorado, Panama (Vincent, 1990)
Orbignya sp. (fam. Arecaceae) Piuai, Brazil 19 148.6 (29.2) 1.33 (0.21)
Astrocaryum sp. (fam. Arecaceae) Piuai, Brazil 19 197.3 (31.8) 1.66 (0.15)
Elaeis guineensis (fam. Arecaceae) Oil palm 3 126.3 (20.6) 2.46 (1.04)
Missouri Botanical Gardens
Macadamia ternifolia (fam. Arecaceae) 5 162.2 (107.8) 2.59 (1.42) Modulus: 2-6 GPa (Jennings and

commercial supplier: Australia

Seed kernels

Macmillian, 1986); 4.8 GPa (Wang
and Mai, 1994) Hardness: 180 MPa
(Jennings and Macmillan, 1986)

Almond 6 2.52 (0.54) 0.0576 (0.02)

Hazelnut 5 7.18 (4.36) 0.194 (0.02)

Brazil nut 6 7.13 (2.54) 0.198 (0.076) Modulus: 0.034 GPa (Agrawal and
Lucas, 2003)

Macadamia 5 4.90 (0.87) 135.0 (0.046) Modulus: 0.032 GPa (Agrawal and
Lucas, 2003; 0.045 Wang and Mai,
1994)

Underground Storage organs (vegetables)

Raw white potato 5 0.189 (0.012) 0.00412 (0.0018) (Dynamic storage) Modulus: 0.003
GPa (Dejmek and Miyawaki, 2002)

Raw carrot 4 1.3 (0.71) 0.018 (0.007) Modulus: 0.0046 GPa (Lucas, 1980);
0.0014 GPa (Thiel and Donald,
1998)

Standard polymers

Polytetra-fluoroethylene (Teflon) 15 41.3 (10.25) 0.65 (0.10) Modulus: 1.46 GPa (vibration); 0.50
GPa (compressive modulus—Anon,
2008) Hardness: 50-65 MPa
(Kodintseva et al., 2006)

Polycarbonate (Makrolon GP) 6 275.9 (68.3) 1.63 (0.18) Modulus: 2.35 GPa (vibration); 2.38
GPa (Bayer datasheet); 6.8 GPa
(Oyen and Cook, 2003) Hardness:
260 MPa (Oyen and Cook, 2003);

Expanded polystyrene (Styrofoam) 5 0.398 (0.034) 0.0084 (0.0017) Modulus: 0.0092 GPa (vibration)

Polymethyl methacrylate 2 324.2 (185.1) 4.49 (0.55) Modulus: 5.37 GPa (vibration); 8.6

GPa (Oyen and Cook, 2003)
Hardness: 390 MPa (Oyen and
Cook, 2003)

time chart of force versus displacement was provided on
the computer screen. After loading to the desired depth
or force, the crosshead direction was abruptly reversed
(without dwelling at maximum load) and the wheel
turned at approximately the same speed until the in-
denter returned to its original out-of-contact position.
The form of the resulting graph is shown in Figure 1D.

The area of an indentation is usually measured after
unloading by optical means. A significant advance in
nanolevel testing has been the employment of a theoreti-
cal analysis by Sneddon (1965) that predicts how a mate-
rial behaves under an indenter during both loading and
unloading (Oliver and Pharr, 1992, 2004). This allows
the estimation of both hardness (during loading) and the
elastic modulus (during unloading) without direct mea-
surement of contact area. The most important point is
that an indenter does not have a completely local effect,
tending to drag material down on either side as it driven
into the material (Fig. 1A,B). Thus, the depth to which
an indenter is apparently inserted into a material gener-
ally exceeds the actual penetration measured from the
(displaced) surface (Oliver and Pharr, 1992). The follow-
ing shows how analysis usually associated with nanoin-
dentation can be employed in a macro-test.

American Journal of Physical Anthropology

In an ideal elastic-plastic solid, one that transitions
instantly at a yield point from elastic to plastic behavior,
if a force P produces a permanent indentation of area
A, this area being that projected in the plane of the
specimen surface, then the hardness is given (Tabor,
1951) by the following:

H =P/A, (1)

The result is not a material property in itself, but an
indirect measurement of the plastic deformation that a
solid is unable to resist once its yield stress is reached.
For most materials, H = cY, where Y is the yield stress
and ¢ is a coefficient with a value in the range 1-3
(Tabor, 1951; Wilsea et al., 1975). The higher value is
typical of fully dense materials such as metals, whereas
the lowest values apply to materials that collapse
inwards, as is true of cellular plant tissues and other-
wise fully dense materials that have been “foamed”
(Gibson and Ashby, 1999).

The amount of sink-in (Fig. 1B) needs to be deducted
from the total depth of indenter movement. With depth
in general denoted by A, the sink-in depth is given
(Oliver and Pharr, 2004) by the following:
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TABLE 2. Results of chipping macro-indentation experiments

Specimens Number of tests Toughness/MPa m'2 (s.d) Other values for comparison

Seed shells

Orbignya sp. 16 1.93 (0.7)

Scheelea sp. 8 2.77 (1.1) Cocos nucifera 2.65 (Vincent, 1990)

Astrocaryum sp. 10 2.60 (0.8)

Macadamia ternifolia 5 1.13 (0.12) (Wang and Mai, 1994)
Standard ceramic

Sodalime glass 15 0.58 (0.05) 0.6 (Lawn, 1993)

hy = hmax = E(Pmax/s) (2)

where, A, is the total displacement of the indenter at
the maximum force Py, S is the slope of the force-dis-
placement curve on initial unloading (Fig. 1C,D), and ¢
is a coefficient called the “effective indenter shape.” The
actual depth of the indentation with material in contact
(Oliver and Pharr, 1992) is as follows:

hd = hmax - hs~ (3)

The area of contact A, can then be estimated directly
from the indenter geometry, and the indentation hard-
ness given directly by Eq. (1), with the distinction that
the area is not measured after unloading. Also, from
Oliver and Pharr (1992, 2004, the estimate of the elastic
modulus E is then given by:

E =2pA}/?/n'/?S (4)

with f being another function of indenter shape. The
projected area for a Vickers pyramid is related to depth
by A, = 25.4h4. According to Tanaka et al. (2004), the
coefficient ¢ ~ 1, meaning that the Vickers indenter
behaves in many ways as though it was a flat punch,
and f = 1.153. The initial unloading stiffness S could be
determined by linear regression of force on displacement
for the upper part of the unloading curve after subtrac-
tion of machine compliance (Fig. 1D).

The resulting modulus value is often called the
reduced elastic modulus because it is a composite of the
properties of both indenter and (food) specimen. How-
ever, compensation for the indenter modulus of elasticity
makes a negligible difference to values in this study
because of the much lower modulus values for the food
objects compared with that of stainless steel (210 GPa)
or tungsten carbide (~700 GPa). Even for the stiffest
object tested here, the error in not performing this final
step would be <4%.

Chipping tests

The toughness T of sufficiently hard materials can be
obtained from tests whereby chips are removed from
the edge of specimens at the junction of two orthogonal
surfaces (Chai and Lawn, 2007). A major caveat is that
the material has to be sufficiently brittle for cata-
strophic failure and also sufficiently homogeneous for
chip morphology not to be dictated by favored planes of
fracture within the material. With the indenter directed
normal to one of these surfaces, and the indenter tip
lying a distance a from the interface intersection of the
surfaces, the toughness 7 is readily obtained from the

maximum force P, ., at chip removal (Chai and Lawn,
2007), being

T = Ppax/9.3a"?. (5)

To both align the indenter and to view the chipping pro-
cess, a USB digital portable microscope (Veho VMS-001,
Eastleigh, Hants, UK) was focused on the stage, images
being viewed in real time. The maximum force was given
directly on the computer screen, and easily observed
because of the abrupt load drop when a chip is removed.
Thus, the only dimension required by direct measure-
ment in this entire study is that of a, which was
achieved here using calipers under the microscope. The
resulting toughness estimate has units of MPa m'/2.

RESULTS
Hardness-modulus

Results are given in Table 1. The average estimates
for the elastic modulus of the polymers were slightly
lower than those given by vibration testing (as expected),
but similar to those obtained from literature sources
(static values). There appeared to be no large discre-
pancies, but the standard deviations were often large.
Hardness estimates also showed large scatter, but the
results seem entirely reasonable in relation to available
literature values. The moduli for the seed shells were
similar to those for polymers and to literature values.
However, the moduli for the seed kernels and the two
root vegetables were somewhat overestimated compared
with data from other tests, often being more than double
those from direct compression tests (Table 1).

Toughness

Examples of chips in sodalime glass and macadamia
shells are shown in Figure 2. When the peak force for
chipping sodalime glass was plotted against 9.3a'®, for
various a, a straight line resulted (Fig. 4), giving a slope
of 0.58 MPa m'? (Fig. 4). Data for the toughness of glass
and four nutshells are given in Table 2. Often, chip size
was limited by shell thickness (e.g., for macadamia
shells, which were only 2 mm thick); but for feasible val-
ues of a, toughness did not vary with either P, or a,
and chips generally had similar shapes to those of ideal
brittle materials (cf. Fig. 3A-B).

DISCUSSION
Evaluation of test results

The main assumption of depth-sensing indentation
experiments is that the material behaves like an ideal,
linearly elastic-plastic solid (Oliver and Pharr, 1992,
2004). However, no real solid, not even a ceramic,
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Fig. 2. Chips produced in sodalime glass (¢ = 0.64 mm) and the “equatorial region” of macadamia nutshell (¢ = 0.42 mm), as

imaged by the digital microscope.

’
(.

median crack

B
.
@,

radial crack

Fig. 3. A schematic diagram of the consequences of the con-
tact of a tooth (enamel shaded light; dentine dark) with a spher-
ical “hard” food particle, pressed together in the direction of the
arrow. In A, if the indentation hardness of the food particle
exceeds 40% of that of enamel, the enamel may yield beneath
the indenter (shown as dark semicircular zone) at low forces. A
median crack may project vertically from it. With less hard food
particles, there are two other damage possibilities. In B, a ra-
dial crack may initiate in the enamel from the enamel-dentine
junction below the contact point (indicated by a large dot).

behaves exactly like this, and polymers display a distinct
viscous response even at low strains (Oyen and Cook,
2003). Fluid-filled cellular plant tissues can have a very
pronounced time-dependent response with considerable
deviation from linear stress-strain behavior (Warner
et al., 2000). Yet, very soft nonlinear biomaterials like
gels can still be tested by indentation (Ross and Scanlon,
2007), even though full interpretation of the results
requires quantification of time-dependent constants (Goh
et al., 2004). Despite these limitations, both the proper-
ties of polymers and those of seed shells in Table 1 are
in reasonable agreement with the literature and our own
nonindentation estimates. There was less success for the
softer materials and it is clear that indentation tests as
applied here are insufficient. The real value of this study
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though lies more in its applicability to seed shells and
the like because, as stated in the “Introduction,” these
are otherwise very difficult to test in the field. Thus, we
believe that numbers for hardness, modulus, and prob-
ably toughness can be obtained for fallback objects from
field tests. The values for the seed shells in Table 1 are
in the low GigaPascal range, and as such are two orders
of magnitude higher than those given in the review of
orangutan and chimpanzee foods given by Vogel et al.
(2008), suggesting the necessity for techniques such as
these to examine the properties of, e.g., dry fruits and
seed shells. The hardness values are low even compared
with dentine (650 MPaWaters, 1980) and very low com-
pared with enamel (~3,000-6,000 MPa Cuy et al., 2002).

The potential of hard fallback foods
to damage teeth

Tooth crowns are vulnerable to several types of frac-
ture. Contact with a hard particle can cause yielding
(i.e., plastic deformation) of the enamel (Lawn et al., in
press), just as in a hardness test where the enamel is
the specimen. Yielding though is only a contributory fac-
tor to tooth wear and will not cause catastrophic failure
of the tooth. However, if enamel yields before failing,
then a median crack can grow directly from the under-
surface of the plastically deforming zone down through
the enamel (Lawn and Evans, 1977; Fig. 3A). Enamel
can also crack at the enamel-dentine junction, with the
crack climbing upwards toward the point of contact with
the food (Fig. 3B). This latter type of fracture is called a
radial crack. The crown can also fracture very low down
near the cement-enamel junction. Such margin cracking
is commonly encountered in the modern human denti-
tion (Grippo, 1991), but is discussed elsewhere (Lawn
et al., 2009).

The important question to be addressed here is which
of these types of damage may be resisted by thick
enamel. Yielding is the name given to the switch in
behavior of a solid under load from elastic deformation
to permanent (plastic) deformation beyond a particular
value of the stress. It is yielding that leads to marks,
like the pits or scratches typical of dental microwear,
being left on a surface after the load is removed. The rel-
ative hardness of two contacting bodies under load is im-
portant in establishing which of these objects will yield.
Yielding is a general precursor to wear (Lucas et al.,
2008), which may be an important aspect of anatomical
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Fig. 4. The graph shows chipping results for sodalime glass,
plotting the peak force Py against 9.3a"5. The gradient of the
graph, obtained by least-squares regression, gives the toughness
T. The linearity of the data for different chip sizes attests to the
scale-invariance of the relationship.

specializations in relation to fallback foods (Lambert
et al., 2004; Marshall and Wrangham, 2007). Generally,
if the softer object is less than 40% of the hardness of a
harder one, then the harder one will not yield at all
(Atkins and Felbeck, 1974; Atkins, 1982). In such a sit-
uation, the critical load at yield for the softer solid is
given (Rhee et al., 2001) by the following:

Py = 0.85H (H /E)*r? (6)

where r is the effective radius of contact between the
contacting bodies, and £ and H are the modulus and
hardness of the softer object, respectively (Rhee et al.,
2001). It can immediately be noted that yielding has no
dependence on the thickness of the enamel. However,
this is probably not relevant anyway because none of the
estimated hardness values of the seed shells exceeds 300
MPa. This value should be compared with average val-
ues of 3,600 MPa for enamel and 650 MPa for primary
dentine (Braden, 1976; Waters, 1980; Cuy et al., 2002;
Lucas, 2004). Clearly, these food coverings have only
~10% of the hardness of enamel and will not mark it, as
was established experimentally by Peters (1982). The
hardness values are closer to those of primary dentine,
and even more so with secondary dentine, which can
have values as low as 300 MPa (Baker et al., 1959;
Lucas, 2004). Thus, dentine may be damaged by seed
shells, but not enamel. Seed shells themselves are likely
to yield. As an estimate of the magnitude of the force
required to produce this, values of H = 200 MPa and
E = 3 GPa (Table 1) can be inserted in Eq. (5), together
with » = 20 mm as a typical size of a fallback food object
(Table 3). The result is yielding at around 300 N.

Use of the data to calculate the force
to fracture fallback foods

Seeds have many parallels to teeth. They are often
bilayered, being covered with a thin, stiff, and hard shell

TABLE 3. Predicted forces, calculated from Eq. (7), compared with observed force to failure for five types of mechanically protected seeds and a woody gall

References
Lucas et al. (1991); Lucas et al. (unpub.)
Peters (1987a); Williamson and Lucas (1995)
Observed failure force: Visalberghi et al. (2008)
Observed failure force: Visalberghi et al. (2008)
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with a fibrous structure that can mimic enamel (Lucas
et al.,, 2008). Margin cracks are not relevant because
shells are encapsulating structures rather than crowns,
so instead median and radial cracks are the major threat
to their integrity. Wang and Mai (1994) suggested that
the shells of macadamia (Macadamia ternifolia) nuts of-
ten fail by radial (i.e., deep) cracks. Lucas et al. (1994)
found for both macadamia nuts and Mezzettia parviflora
seeds eaten by orangutans in Borneo that loading them
either with flat plates or tooth row replicas has little
influence on the force at which the seed fails. Lawn and
Lee (in press) explain this by showing that the condition
for catastrophic failure is similar for both median and
radial cracks as they spread around the shell. The force
for propagation of both of these types of crack is given
by the following:

PF = BFTdLs/10g(Eshell/Econtent) (7)

where, T is the toughness, d is the shell thickness, Eg,en
is the shell modulus, E ontent 1s the modulus of the
encapsulated tissue, and Br = 13.5 + 2.1(r/d) (Rhee
et al., 2001; Rudas et al., 2005; Lawn and Lee, in press).
It can be noted in Eq. (7) that, the force will generally be
raised by increasing d, i.e., by thickening the outer shell.
Also, because of the inclusion of the radius of curvature
in the coefficient, a shell of higher radius will have
greater resistance to failure. Since seeds yield, the equa-
tion is relevant both to the propagation of median and
radial cracks. Although enamel is unlikely to yield, it is
still vulnerable to radial cracking and thus both enamel
thickness and cuspal radius will be important in pre-
venting tooth fracture.

Although toughness estimates were not obtained in
this study, they could be incorporated into future studies
if crack lengths can be obtained and measured following
indentation. The importance of this is indicated in Table
3, which uses Eq. (6) to predict the bite force from litera-
ture estimates of the properties of three types of fallback
food, two from primate studies, and one from the human
literature (Peters, 1987b). For each of these objects, the
predicted failure force from radial cracking lies fairly
close to that predicted by Eq. (6) for Pr.

Applicability of the analysis in a broader context

It is clear that hard foods in primate diets are prob-
ably much less hard than enamel, but can approach that
of dentine. This needs documenting. If a hardness dis-
parity between enamel and dentine were not present,
then unless ingested particle sizes were really large, the
enamel would yield at far below the forces at which the
food objects in Table 3 fail (Lucas et al., 2008; Lawn
et al., 2009; Constantino et al., submitted). This puts an
evolutionary premium on enamel hardness and stiffness
to far exceed that of foods and their coverings. Once
cracking has started, then enamel thickness comes into
play as a protective mechanism: the thicker the enamel,
the higher would be the forces that cause catastrophic
cracking. Further, since the coefficient By increases with
the radius of curvature of a cusp, blunter cusps crack at
higher loads than sharper ones. Once enamel thins, the
cusp becomes vulnerable, and once dentine is exposed,
the latter would wear rapidly because it would yield
against seed shell and at lower force. One functional
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aspect of a thick enamel cap is to delay such dentinal
exposure.

Bite forces and the arrangement of jaw muscles and
skeleton to achieve these efficiently are a traditional con-
cern of researchers in mammalian jaw mechanics (e.g.,
Crompton, 1963; Bramble, 1978; Greaves, 1978; Walker,
1978; Hylander, 1978, 1985; Spencer, 1998). Most often,
the bite is assumed to be a point load—the circumstan-
ces likely when hard (fallback) foods are eaten. There do
not appear to be any previous estimates of the actual
forces needed to destroy a food object that could inform
such analyses, so the only actual data generally comes
from bite-force gauges. Our point here is that many
researchers have used gauges with a very high modulus
and hardness. In studies on humans, a classic form is a
tuning fork (Carlsson, 1974). A surface liner is often
used, but if this is thin, then it will do little to spread
the force before the properties of the underlying metal
prevail. A bite-force gauge made out of stainless steel
would have H > 2,000 MPa and E = 210 GPa (Atkins
and Mai, 1985). In a sense, such a gauge is a mimick of
a fallback food, but differing in that it is very much
harder. Such steel is almost certain to cause yielding in
enamel. The yield force Py can be predicted from Eq. (6),
and though its actual value depends on the radius of
contact, it is likely to be very much lower than the ~800
N often quoted in studies of maximum bite force in
young human adults (Braun et al.,, 1995; Miyawaki
et al., 2005). If a human subject can sense local yielding
in enamel, a possibility that is strongly supported by the
studies of Paphangkorakit and Osborn (1998a, 2000),
then measurements might not actually pick up the maxi-
mum force that subjects could generate because the sub-
ject would desist at this point. The influence of gauge ri-
gidity is sometimes mentioned (Braun et al., 1995), but
Paphangkorakit and Osborn (1998b) have actually
shown that an “elastic” design of gauge can significantly
increase the bite forces that human subjects are pre-
pared to generate.
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